MicroMAX will be a microfocus beamline for macromolecular crystallography. It will be flexible both in terms of X-ray performance and experimental setup. It will be possible both to collect oscillation data and serial crystallography data using different sample delivery systems. The design and performance of the beamline is defined by the possibilities to collect:

  • high-quality data from microcrystals,
  • data at room-temperature,
  • time-resolved data in the milli- and microsecond time scales.

MicroMAX Science Case

The field of structural biology has benefited tremendously by structure determinations at synchrotron radiation sources and typically a large fraction of the users and publications at these facilities come from the field of macromolecular crystallography (MX). The MAX IV MX beamline BioMAX covers a wide range of applications within MX providing an ideal beamline for most MX experiments.

MicroMAX will open new possibilities within the field of macromolecular crystallography by 1) providing an X-ray beam with unique properties and 2) by combining this with new experimental methods that are presently being developed at many X-ray free electron lasers (XFELs) and synchrotron radiation facilities. The aim of these new experimental methods is to most efficiently collect the best data from a large number of crystals since these demanding projects with microcrystals inherently will need many crystals to record full datasets due to e.g. radiation damage and sample heterogeneity. These methods are commonly referred to as “serial crystallography”. MicroMAX will thus widen the scope of MX to difficult targets for which only microcrystals are available, but also provide new opportunities in terms of for example collecting time-resolved data with time-resolution down to the microsecond range.

As there is rapid development of serial crystallography and in particular new sample delivery systems, MicroMAX must be flexible to take future developments into account. In addition, since it is likely that different sample delivery methods will be optimal for different experiments, it is important to offer a choice. Therefore, the experimental station will include setups for both standard rotational data collection and for new sample delivery methods. The experimental station will be able to accommodate fixed-target scanning methods, jet-driven sample delivery, micro-fluidics, acoustics and more. MicroMAX both complements BioMAX and extends the MX possibilities and capacity at MAX IV.