Can additively manufactured steel be more corrosion resistant?
Exeger investigates the chemistry of liquid-filled energy material
X-Rays help the industry make chocolate even more enjoyable
Metal industry giant conducts experiments at MAX IV
DanMAX is catalysing industry research
Exploring the structure of industrial polymers with the help of the CoSAXS beamline
MAX IV & partners poised to innovate life science sector
A fuel conversion process akin to photosynthesis
Researchers at Linköping University in Sweden are developing a promising new method to selectively convert carbon dioxide and water to various types of fuel. Driving this reaction is solar energy. The recent study, published in ACS Nano, combines the material graphene and the semiconductor cubic silicon carbide in a process which essentially mimics photosynthesis in plants.
Oxygen cycling reveals path to next-gen ferroelectric devices
Research is heating up to achieve greater fundamental understanding of the mechanism of ferroelectricity in hafnia-based materials, a crucial step in the development of next generation devices. New findings from the University of Groningen (RUG) in the journal Science define the key role of oxygen for greater miniaturization potential and structural stability beyond that of standard ferroelectric materials used in low-power memories. Electron microscopy and MAX IV’s NanoMAX beamline have illuminated the nature of polarization in thin films of hafnium zirconium oxide for ferroelectronics.