Mapping the genetic tools of fungi for fuel production

Fungal enzymes play an important role in the breakdown of plant cell walls during plant degradation. An international collaboration of researchers explored the auxiliary activities 7 (AA7) enzyme family, characterizing four fungal enzymes and uncovering a novel class of flavo-enzymes, exemplified by oligosaccharide dehydrogenase. The enzymes fuel the activity of lytic polysaccharide monooxygenases (LPMOs) in the challenging process of crystalline cellulose degradation. The study, published in Nature Communications, offers promise for tuning the efficiency of enzymatic breakdown processes of biomass feedstocks used in energy and biomaterial production.

A fuel conversion process akin to photosynthesis

Researchers at Linköping University in Sweden are developing a promising new method to selectively convert carbon dioxide and water to various types of fuel. Driving this reaction is solar energy. The recent study, published in ACS Nano, combines the material graphene and the semiconductor cubic silicon carbide in a process which essentially mimics photosynthesis in plants.

Oxygen cycling reveals path to next-gen ferroelectric devices

Research is heating up to achieve greater fundamental understanding of the mechanism of ferroelectricity in hafnia-based materials, a crucial step in the development of next generation devices. New findings from the University of Groningen (RUG) in the journal Science define the key role of oxygen for greater miniaturization potential and structural stability beyond that of standard ferroelectric materials used in low-power memories. Electron microscopy and MAX IV’s NanoMAX beamline have illuminated the nature of polarization in thin films of hafnium zirconium oxide for ferroelectronics.

Modelling electrochemical potential for better Li-batteries

To understand the electrochemical potential of lithium-ion batteries, it’s important to decipher the chemical processes at electrode interfaces occurring during device activity. Using HIPPIE beamline, a research group investigated and modelled the influence of electrochemical potential differences in operando in these batteries.

Tackling SARS CoV-2 viral genome replication machinery using X-rays

An international collaboration between the UCL School of Pharmacy, the Lund Protein Production Platform (LP3) and ESS, through its DEMAX platform, have performed biophysical and structural studies of three non-structural proteins from the novel coronavirus, SARS CoV-2, the causative agent of COVID-19. In the spring of 2020, they managed to solve and started to analyse one of these proteins, Nsp10, by using the BioMAX beamline at MAX IV Laboratory. Early October published their results in the International Journal of Molecular Sciences.

Clues to block replication of SARS-CoV-2 found with FragMAX platform

An international collaboration of scientists identified four fragments that interact with the nsp10 protein of the SARS-CoV-2 virus using the FragMAX platform and BioMAX beamline. The fragments could be used to develop inhibitors that supplant key enzymes activated by the protein—an application which holds potential to block the viral replication process.

Riverine iron survives salty exit to sea

Iron organic complexes in Sweden’s boreal rivers significantly contribute to increased iron concentration in open marine waters, X-ray spectroscopy data shows. A Lund University study in Biogeosciences characterizes the role of salinity for iron-loading in estuarine zones, a factor which underpins intensifying seasonal algal blooms in the Baltic Sea.

Salts of the Earth aid understanding of Martian salt chemistry

How does one learn more about the characteristics of the Martian atmospheric chemistry and climate system while seated 56 million plus kilometres away? Using MAX IV’s HIPPIE beamline, an international research group studied the surface solvation of salts from Earth’s Qaidam Basin, which bear close resemblance to Martian salts and how these influence the respective planet’s surface. The work also establishes the feasibility of the APXPS technique for future studies with Martian salts.