Are you preparing a planning grant or working on an application for the 2026 Excellence Clusters call?
Imagine if you move the beam
Think differently, or in some cases, look at the problem from an entirely new angle. An international research group from PETRA III synchrotron in Germany and MAX IV has developed a new method for the scanning lens-less imaging technique known as ptychography. The system is designed for various sample environments, in situ and in operando conditions, and is portable, enabling usage at different beamlines or synchrotrons.
Inventive AI and robotic self-driving lab accelerates material discoveries
The great planetary reset: Mapping glass pearls
Their days were numbered, all manner of Cretaceous life in kingdom plantae and animalia. Those that survived the impact winter became our modern groups of terrestrial and aquatic plants, animals, and marine plankton. Scientists want to understand how the Chicxulub asteroid that hit Earth 66 million years ago changed the conditions for life on the planet and veiled the sun for so many years, leading to the extinction of the dinosaurs. Secrets to this understanding are locked in the asteroid’s physical composition. An international research group has now produced a unique elemental map of the spherules formed by the asteroid impact, with data from MAX IV’s Balder and NanoMAX beamlines. The findings may better explain the aerosol cloud formation that catalysed extinction-level climate change.
A path to polymerize metallic hydrogen?
An international research group reports in Nature the observation of the phase transition of a hexagonal close-packed (HCP) crystal structure of hydrogen to a 6-fold larger hydrogen supercell. The findings describe polymerization activity at extreme pressures which reveals how atoms arrange themselves in solid hydrogen and offers clues to the formation of metallic hydrogen. The study includes X-ray diffraction (XRD) data from MAX IV’s NanoMAX beamline.
New anti-cancer candidate revealed with AI drug screening and X-rays
Consider it a success case or a bright point of discovery in the search for cancer inhibitors. An international team of researchers has identified a new compound to potentially disarm AKR1C3, an upregulated enzyme found in prostate, breast and other cancers, using AI-based drug screening and brilliant X-ray light at MAX IV. Is this study a diamond in the rough or a glimpse of more to come in biomedical research using artificial intelligence?
2024 – A truly remarkable year for MAX IV
Scientific output continued to increase at MAX IV during 2024, with the facility making societal contributions within areas such as life science, energy and materials science.
Forging designer supramolecular hydrogels
A research group from the University of Glasgow in the United Kingdom reports in the journal Nature Synthesis that dynamic supramolecular hydrogels can be designed with desired structures using a new ‘forging’ technique. The out-of-equilibrium system was tested using MAX IV’s Small Angle X-ray Scattering (SAXS) beamline, CoSAXS.
The dawning of new interpretation for RIXS spectra
In a recent study at Veritas beamline, researchers from Uppsala University in Sweden observed parity-forbidden transitions to electronic states in an oxygen molecule due to interference analogous to Young’s double split experiment (YDSE). The findings, published in Science Advances, may change the way spectral data is interpreted for RIXS experiments and refine the conventional wisdom in synchrotron science for the interplay of photons with the dynamics of atomic nuclei in molecules.
Gut bacteria and atomic structure tell the story of universal blood
In clinical practice it is well established that type O blood, which lacks A and B antigens on the red blood cells, can be safely used in universal blood transfusions for any ABO blood group. Serious or even fatal immune reactions may occur if one receives incompatible blood from a donor. How might we mitigate the risks for low donor supply or unusable blood in emergencies? Research groups from the Technical University of Denmark (DTU) and Lund University now report in Nature Microbiology, an enzymatic conversion method to create ABO-universal blood, a major leap towards human blood that could potentially enable live-saving blood donations to anyone, without negative immune response or the need for matched donor-recipient blood types. Data for the structural determination of key enzymes used in conversion of the ABO-universal blood was collected at MAX IV’s BioMAX beamline.