The role of synthesis gas in tomorrow’s sustainable fuels

In a new publication in Nature Communications, a team from the Dutch company Syngaschem BV and the Dutch Institute for Fundamental Energy Research elucidates for the first time some aspects of the Fischer-Tropsch reaction, used for converting synthesis gas into synthetic fuels. Analysis performed at the HIPPIE beamline at MAX IV was instrumental to achieving these results.

Identifying chemical content to increase the usefulness of solid waste ashes

Fortum Waste Solutions, Sysav, Eon, Stena and NOAH, in collaboration with Researchers from RISE and Chalmers, used beamline Balder to identify chemical species of copper and zinc in ashes that remain after burning solid waste. Not all forms of the metals in ashes pose the same risk to the environment. Therefore, more detailed knowledge can increase the possible uses of the ashes.

Honeycomb borophene: myth or reality?

Scientists examined whether honeycomb boron can function as a structural analogue 2D material to graphene. Employing core-level X-ray spectroscopies, scanning tunneling microscopy, and DFT calculations, they analyzed the structure and electronic properties of honeycomb boron after its reaction with aluminum. They found that although it resembles graphene in electronic structure to some extent, it fails to form a quasi-freestanding monolayer on aluminum. This lack of a freestanding state is a clear difference from the behavior of graphene or monolayer hexagonal boron nitride (h-BN) on lattice-mismatched metal surfaces.

Dear user community: CoSAXS beamline is performance ready

A successful, first rigorous test of CoSAXS, the Small-Angle X-ray Scattering beamline at MAX IV has now completed. A collaboration of scientists from NanoMAX, Balder, and CoSAXS beamlines demonstrated the accuracy, capabilities, and most especially, coherence properties of the instrument. The work marks the first experimental measurements for coherence in a SAXS beamline at a fourth generation synchrotron.

Designing a Model Catalyst for Large-Scale Biofuel Production

The future of efficient biofuel production is within reach. With measurements from MAX IV’s SPECIES beamline, a group from Lund University and RISE, Research Institutes of Sweden, has successfully developed a model catalyst that, once tuned, holds the potential to significantly improve the treatment process for the large-scale manufacture of viable biofuels from lignin. Lignin is a plant polymer only secondary in abundance to cellulose in nature.

Designing a Model Catalyst for Large-Scale Biofuel Production

The future of efficient biofuel production is within reach. With measurements from MAX IV’s SPECIES beamline, a group from Lund University and RISE, Research Institutes of Sweden, has successfully developed a model catalyst that, once tuned, holds potential to significantly improve the treatment process for the large-scale manufacture of viable biofuels from lignin. Lignin is a

Structures of several clinically relevant NUDT15 variants are discovered – paving the way for better cancer treatments

Recent research by a group of researchers from Sweden, the US, and the UK successfully developed a specific NUDT15 inhibitor, TH7755, that helped the group to obtain structures of clinically relevant NUDT15 variants: Arg139Cys, Arg139His, Val18Ile, and V18_V19insGlyVal. These insights allow further understandings of the structural basis of thiopurine intolerance in patients carrying these NUDT15