Fungal enzymes play an important role in the breakdown of plant cell walls during plant degradation. An international collaboration of researchers explored the auxiliary activities 7 (AA7) enzyme family, characterizing four fungal enzymes and uncovering a novel class of flavo-enzymes, exemplified by oligosaccharide dehydrogenase. The enzymes fuel the activity of lytic polysaccharide monooxygenases (LPMOs) in the challenging process of crystalline cellulose degradation. The study, published in Nature Communications, offers promise for tuning the efficiency of enzymatic breakdown processes of biomass feedstocks used in energy and biomaterial production.
Tackling SARS CoV-2 viral genome replication machinery using X-rays
An international collaboration between the UCL School of Pharmacy, the Lund Protein Production Platform (LP3) and ESS, through its DEMAX platform, have performed biophysical and structural studies of three non-structural proteins from the novel coronavirus, SARS CoV-2, the causative agent of COVID-19. In the spring of 2020, they managed to solve and started to analyse one of these proteins, Nsp10, by using the BioMAX beamline at MAX IV Laboratory. Early October published their results in the International Journal of Molecular Sciences.
Clues to block replication of SARS-CoV-2 found with FragMAX platform
An international collaboration of scientists identified four fragments that interact with the nsp10 protein of the SARS-CoV-2 virus using the FragMAX platform and BioMAX beamline. The fragments could be used to develop inhibitors that supplant key enzymes activated by the protein—an application which holds potential to block the viral replication process.
Riverine iron survives salty exit to sea
Iron organic complexes in Sweden’s boreal rivers significantly contribute to increased iron concentration in open marine waters, X-ray spectroscopy data shows. A Lund University study in Biogeosciences characterizes the role of salinity for iron-loading in estuarine zones, a factor which underpins intensifying seasonal algal blooms in the Baltic Sea.
New Eyes on Forest-Based Materials – ForMAX comes online
ForMAX is the 15th beamline to come online at MAX IV. A large part of the research to be conducted at the beamline will promote the development of new materials and speciality chemicals from renewable forest resources. ForMAX is funded by the Knut and Alice Wallenberg Foundation and industrial partners through the Treesearch consortium.
Scientists unlock secrets of surface receptor activation opening door to engineer plant-microbe interactions
In a study combining structural biology, biochemical and genetic approaches, scientists showed that plant cell-surface receptors employ a mechanism for error correction responsible for the control of receptor activation and signaling select bacterial symbionts. This demonstration opens the door to potentially manipulating such receptors’ binding sites in legumes and other organisms in the future.
Understanding NUDT15: lessen the efficacy of HCMV treatment
Aarhus scientists investigate secrets behind mantis shrimp clubs at DanMAX
Mantis shrimp or stomatopods, intrigue humans due to their beauty but also fierce predatory behavior.