Tackling SARS CoV-2 viral genome replication machinery using X-rays

An international collaboration between the UCL School of Pharmacy, the Lund Protein Production Platform (LP3) and ESS, through its DEMAX platform, have performed biophysical and structural studies of three non-structural proteins from the novel coronavirus, SARS CoV-2, the causative agent of COVID-19. In the spring of 2020, they managed to solve and started to analyse one of these proteins, Nsp10, by using the BioMAX beamline at MAX IV Laboratory. Early October published their results in the International Journal of Molecular Sciences.

Clues to block replication of SARS-CoV-2 found with FragMAX platform

An international collaboration of scientists identified four fragments that interact with the nsp10 protein of the SARS-CoV-2 virus using the FragMAX platform and BioMAX beamline. The fragments could be used to develop inhibitors that supplant key enzymes activated by the protein—an application which holds potential to block the viral replication process.

Riverine iron survives salty exit to sea

Iron organic complexes in Sweden’s boreal rivers significantly contribute to increased iron concentration in open marine waters, X-ray spectroscopy data shows. A Lund University study in Biogeosciences characterizes the role of salinity for iron-loading in estuarine zones, a factor which underpins intensifying seasonal algal blooms in the Baltic Sea.

New Eyes on Forest-Based Materials – ForMAX comes online

ForMAX is the 15th beamline to come online at MAX IV. A large part of the research to be conducted at the beamline will promote the development of new materials and speciality chemicals from renewable forest resources. ForMAX is funded by the Knut and Alice Wallenberg Foundation and industrial partners through the Treesearch consortium.

Scientists unlock secrets of surface receptor activation opening door to engineer plant-microbe interactions

In a study combining structural biology, biochemical and genetic approaches, scientists showed that plant cell-surface receptors employ a mechanism for error correction responsible for the control of receptor activation and signaling select bacterial symbionts. This demonstration opens the door to potentially manipulating such receptors’ binding sites in legumes and other organisms in the future.

Understanding NUDT15: lessen the efficacy of HCMV treatment

Ganciclovir, a regular medicine used to treat human cytomegalovirus (HCMV) infections, was found less efficient when reacting to human’s NUDT15 enzyme — based on a recent BioMAX study. This finding gives further insight into pharmaceutical treatments’ efficacy in HCMV cases. Although being regarded as a common disease, HCMV infections might cause severe consequences for immunocompromised

HALOS – A unique collaboration in Life Science

A new EU project in the program area Öresund-Kattegatt-Skagerak (ÖKS) has been approved. The Hanseatic League of Science (HALOS) will build a unique collaboration between Hamburg and South-West Scandinavia, bring together the four unique research facilities MAX IV, ESS, DESY and European XFEL, and create a centre for integrated, world-leading Life Science innovation and research.

Structures of several clinically relevant NUDT15 variants are discovered – paving the way for better cancer treatments

Recent research by a group of researchers from Sweden, the US, and the UK successfully developed a specific NUDT15 inhibitor, TH7755, that helped the group to obtain structures of clinically relevant NUDT15 variants: Arg139Cys, Arg139His, Val18Ile, and V18_V19insGlyVal. These insights allow further understandings of the structural basis of thiopurine intolerance in patients carrying these NUDT15

MAX IV & partners poised to innovate life science sector

MAX IV Laboratory, together with Science for Life Laboratory (SciLifeLab) and the European Spallation Source ERIC (ESS), form the joint Science Hub InfraLife, Infra Access for Life Science Sweden. Recently launched, InfraLife supports Sweden’s national investments in large-scale research infrastructure through dynamic facilitation and access to cutting-edge technology, data science, and active industry-enabling collaboration, outreach, and