Amorphous atomic structure of tungsten oxide detected at DanMAX

The relationship between atomic structure and size is crucial knowledge in the effort to improve nanomaterials properties. Amorphous atomic structure was revealed in research done at DanMAX beamline of otherwise crystalline tungsten oxide nanoparticles due to the change of the nanoparticles size. This understanding is crucial for developing materials for, among others, catalysis, batteries, solar cells, memory storage, medicine, etc.

ForMAX beamline is now open for experiments

ForMAX, the newest beamline at MAX IV, is now officially open for experiments. The focus will be research on new, sustainable materials from the forest, but the beamline will also be useful for research in many other fields and industries, including food, textiles, and life science.

Spotlight on student science

The winner of the Student Science Award was announced at the 34th MAX IV User Meeting held in early October. User Meeting organizers and a team of three external adjudicators awarded the student submission based upon the criteria: research quality and potential impact. This year’s Student Award recipient is Harald Wallander for his research on characterizing ultra-thin materials during catalytic action.

Designing materials for a circular economy

According to the European Union’s Circular Economy Action Plan, industry can determine up to 80 % of a product’s subsequent environmental impact at the design phase. However, the linear manufacturing pattern offers few incentives to make products more sustainable. The research infrastructure project ReMade@ARI, which deals with innovative materials for key components in various areas such as electronics, packaging or textiles, aims to change this: The goal is to develop new materials with high recyclability and at the same time competitive functionalities. To this end, the institutions involved want to harness the potential of more than 50 analytical research infrastructures throughout Europe. MAX IV is a partner of this consortium.

Creating tastier vegan cheese using synchrotron X-rays

The quest for tastier, more sustainable vegan cheese has led Swedish food company Cassius AB to take a closer look at cheese protein structures. Using synchrotron X-rays at MAX IV, Cassius are searching for the perfect scientific recipe for plant-based cheese.

Webinar: Explore the ForMAX beamline at MAX IV

This fall, the ForMAX beamline at MAX IV will go into operation, opening the door to new research opportunities. You are invited to join a series of free webinars to learn about the beamline and how to get access to the instrument. The first webinar is on September 14th 2022.

Developing next generation biostimulants using synchrotron X-rays

Arevo, a company known for producing environmentally friendly solutions for improved plant establishment and growth, has performed its first experiment at MAX IV. The research is focused on developing a new line of biostimulant products with a unique nutrient release profile, ensuring beneficial long-term effects for both plants and soils.

Mapping the genetic tools of fungi for fuel production

Fungal enzymes play an important role in the breakdown of plant cell walls during plant degradation. An international collaboration of researchers explored the auxiliary activities 7 (AA7) enzyme family, characterizing four fungal enzymes and uncovering a novel class of flavo-enzymes, exemplified by oligosaccharide dehydrogenase. The enzymes fuel the activity of lytic polysaccharide monooxygenases (LPMOs) in the challenging process of crystalline cellulose degradation. The study, published in Nature Communications, offers promise for tuning the efficiency of enzymatic breakdown processes of biomass feedstocks used in energy and biomaterial production.

A fuel conversion process akin to photosynthesis

Researchers at Linköping University in Sweden are developing a promising new method to selectively convert carbon dioxide and water to various types of fuel. Driving this reaction is solar energy. The recent study, published in ACS Nano, combines the material graphene and the semiconductor cubic silicon carbide in a process which essentially mimics photosynthesis in plants.