Nanoscience for clean water at ForMAX supported by ReMade@ARI

Alejandro Cortés Villena and Alessandro Ciccone from Institute of Molecular Science in Valencia are using the ForMAX beamline as part of their research supported by ReMade@ARI, a collaboration project focusing on Circular Economy. They are studying carbon-based nanomaterials that are going to be used for enabling cleaning of contaminants in water with the help of sunlight through photocatalysis.

A cloudy route for shipping in the Arctic

The melting of polar ice due to climate change will open global shipping routes through the Arctic in summer by mid-century, according to experts. More ships in the remote area means greater pollution impacts on the marine ecosystem. What will these impacts look like? In a first commissioning experiment at MAX IV’s SoftiMAX beamline, Swedish researchers analysed the cloud-forming abilities of particle exhaust from ships using low-sulphate fuels as well as high-sulphate fuels conditioned with wet scrubbers. Their findings indicate the fuel types produce different, but unintended effects on particle emissions and therefore, our atmosphere.

ReMade@ARI Call for Proposals

Are you motivated to develop materials for a circular economy? Do you have an innovative scientific idea, potentially even with an industrial impact? The ReMade project is committed to supporting the development of innovative, sustainable materials by providing scientists with analytical tools to explore the properties and structure of materials right down to atomic resolution.

Bacterial biomass conversion for renewable fuels

Imagine this future. Vehicles and machinery primarily powered by renewable organic matter, a resource far better for the planet’s health than today’s predominate fossil fuels. What factors stand in the way for a global power transition to competitive, industrial-scale biomass conversion? A study in Nature Communications reveals one key piece of the puzzle using bacterial enzymes. At MAX IV’s BioMAX beamline, an international team of scientists has determined important rate-limiting steps of lignocellulose breakdown, a major hurdle in efficient biomass processing. The discovery holds promise for a significant reduction in manufacturing costs and faster adoption of new biomass-derived fuels to market.

Designing materials for a circular economy

According to the European Union’s Circular Economy Action Plan, industry can determine up to 80 % of a product’s subsequent environmental impact at the design phase. However, the linear manufacturing pattern offers few incentives to make products more sustainable. The research infrastructure project ReMade@ARI, which deals with innovative materials for key components in various areas such as electronics, packaging or textiles, aims to change this: The goal is to develop new materials with high recyclability and at the same time competitive functionalities. To this end, the institutions involved want to harness the potential of more than 50 analytical research infrastructures throughout Europe. MAX IV is a partner of this consortium.

Creating tastier vegan cheese using synchrotron X-rays

The quest for tastier, more sustainable vegan cheese has led Swedish food company Cassius AB to take a closer look at cheese protein structures. Using synchrotron X-rays at MAX IV, Cassius are searching for the perfect scientific recipe for plant-based cheese.

Developing next generation biostimulants using synchrotron X-rays

Arevo, a company known for producing environmentally friendly solutions for improved plant establishment and growth, has performed its first experiment at MAX IV. The research is focused on developing a new line of biostimulant products with a unique nutrient release profile, ensuring beneficial long-term effects for both plants and soils.

A fuel conversion process akin to photosynthesis

Researchers at Linköping University in Sweden are developing a promising new method to selectively convert carbon dioxide and water to various types of fuel. Driving this reaction is solar energy. The recent study, published in ACS Nano, combines the material graphene and the semiconductor cubic silicon carbide in a process which essentially mimics photosynthesis in plants.

Riverine iron survives salty exit to sea

Iron organic complexes in Sweden’s boreal rivers significantly contribute to increased iron concentration in open marine waters, X-ray spectroscopy data shows. A Lund University study in Biogeosciences characterizes the role of salinity for iron-loading in estuarine zones, a factor which underpins intensifying seasonal algal blooms in the Baltic Sea.

Exploring the structure of industrial polymers with the help of the CoSAXS beamline

People consume goods daily without realising the journey those products have been through before being displayed on store shelves. Everything involved in the production is a result of thorough R&D, even the eye-catching package of the products has gone through a substantial evolution. To this day, researchers are working on taking the packaging to the