Dsc04677 Web

Size of support particles is key to catalytic converter efficiency

In a study conducted at MAX IV and other European synchrotrons, researchers from the Netherlands and Belgium show that the catalytic activity of highly distributed palladium depends on the size of the cerium dioxide support particles. Optimising particle size can lead to a more effective conversion of toxic carbon monoxide exhaust even in challenging cold start conditions. The study was published in the journal SCIENCE. 

Highlights

Drone image of MAX IV from above, surrounded by green landscape and the horizon.

A record year for research at MAX IV

MAX IV is making significant societal contributions in terms of record-high scientific productivity. In 2023, the number of publications increased by 51% compared to the previous year, and the number of unique users increased by 31%. Moreover, the number of proposals submitted in the most recent Open Call was higher than ever.

9y9a9159 2

Conceptual design for three potential new beamlines developed with WISE

After successfully bringing the first 16 funded beamlines into operation, we now look into the future. In collaboration with the Wallenberg Initiative Materials Science for Sustainability (WISE), funded by the Knut and Alice Wallenberg Foundation and together with the scientific community, MAX IV will develop the conceptual designs for three potential new materials science beamlines.