SPECIES

SPECIES is an undulator based soft X-ray beamline, located at the 1.5 GeV storage ring. The offered experimental techniques are Ambient Pressure X-ray Photoelectron Spectroscopy (APXPS), X-ray Absorption Spectroscopy (XAS), X-ray Emission Spectroscopy (XES) and Resonant Inelastic X-ray Scattering (RIXS). The beamline has two branches that use a common elliptically polarizing undulator (EPU61) and a

SoftiMAX

SoftiMAX is a soft X-ray beamline, dedicated to spectromicroscopy and coherent imaging. The beamline will operate in the photon energy range between 275 eV and 2.5 keV and have two branch lines: one for STXM and Ptychography with a sub-100 nm focus, and one modular line for coherent techniques that require a larger beam size.

NanoMAX

The hard X-ray nanoprobe of Max IV – NanoMAX – is designed to take full advantage of MAX IV’s exceptionally low emittance and the resulting coherence properties of the X-ray beam. Two endstations provide a high-flux diffraction-limited KB mirror focus, and an X-ray microscope based on zone plate optics. Upcoming proposal call The next call for

MAXPEEM

Research in a wide range of disciplines – materials science, nano-science, heterogeneous catalysis, corrosion science, polymer science, to name but a few – is in strong need of improved surface imaging techniques with structural, chemical, electronic, and magnetic contrasts at spatial resolutions in the nanometer range. Spectroscopic PhotoElectron and Low Energy Electron Microscope (SPELEEM) is

HIPPIE

The Electrochemistry AP cell will be moved to the Solid-Liquid Branch in November 2022 where it will be commissioned during spring of 2023. Therefore, the cell will not be available for the Spring-2023 user call. Please contact beamline staff for further questions regarding access to the EC cell. HIPPIE is a state-of-the-art beamline for Ambient pressure X-ray photoelectron

FlexPES

The FlexPES (Flexible PhotoElectron Spectroscopy) beamline caters for the experimental needs of both Surface/Material Science and Low Density Matter user communities offering the possibility to perform a variety of photoemission and soft X-ray absorption experiments in the photon energy range 40 – 1500 eV. The two-branch configuration with double-striped toroidal refocusing mirrors ensures maximum flexibility

FinEstBeAMS

FinEstBeAMS is a materials and atmospheric science beamline at the MAX IV 1.5 GeV storage ring. It provides ultraviolet and soft X-ray radiation with precisely controlled and widely variable parameters. The beamline has two branches: one branch is dedicated to ultra-high vacuum studies of surfaces and interfaces and the other to gas-phase experiments and photoluminescence

BioMAX

BioMAX is the first X-ray macromolecular crystallography beamline of MAX IV Laboratory. It has been in user operation since 2017. The design goal for BioMAX was to create a stable and reliable beamline that is user friendly. The beamline experiment set-up is highly automated, in terms of both sample handling hardware and data analysis, while

Balder

Overview The Balder beamline is dedicated to X-ray absorption spectroscopy (XAS) and X-ray emission spectroscopy (XES) in medium and hard X-ray energy range, 2.4-40 keV (at present 4-40 keV). The high brilliance from the 3 GeV storage ring in combination with the beamline design will allow for time-resolved measurements down to sub-second time resolution to

DanMAX

DanMAX is a materials science beamline, dedicated to in situ and operando experiments on real materials. The beamline will operate in the 15–35 keV range and have three endstation instruments: one for full field imaging instrument, one versatile powder diffraction setup using an area detector and a high resolution powder X-ray diffraction instrument using a