Scientists detect key structures responsible for coupling process in sugar symporters and decode active sugar transport in plants

Researchers from Aarhus University achieved breakthrough insights about the coupling process that allows active sugar transport in plants aided by MAX IV’s BioMAX beamline. They successfully detected the inward and outward confirmations of the symporter Sugar Transport Protein 10 (STP10) – a protein responsible for monosaccharide transport across cell membranes – at high resolutions (1.8

Image: Empa

Zigzag graphene nanoribbons’ surface state hints at spin-polarized channels’ potential practical applications

An international team of researchers confirmed that epitaxial zigzag graphene nanoribbons grown on mesa-structured silicon carbide form protected spin-polarized transport channels at room temperature with very weak spin–orbit interaction. They discovered that while the zigzag graphene nanoribbon monolayer sank almost completely into a silicon carbide facet, its lower edge dissolved and mixed with the silicon