Research in a wide range of disciplines – materials science, nano-science, heterogeneous catalysis, corrosion science, polymer science to name but a few – is in strong need of improved surface imaging techniques with structural, chemical, electronic, and magnetic contrasts at spatial resolutions in the nanometer range. Spectroscopic PhotoElectron and Low Energy Electron Microscope (SPELEEM) is unique in that it provides easy access to all of these contrast mechanisms at resolutions in the nanometer range in a single instrument. One of recent and the most important developments concerning this instrument is the upgrade to a microscope with an aberration corrector, which improves the spatial resolution of the microscope by an order of magnitude while increasing the transmission by a similar factor. SPELEEM also has the advantage of having a large dynamic range of view of up to ~100 micrometres thereby facilitating easy access to the structure of not only the nanometer but the micrometer scale as well. Finally, as the detection in SPELEEM is done at video-rates, monitoring of real-time dynamical processes is possible.

Techniques LEEM, DF-LEEM, UVPEEM, XPEEM, DF-XPEEM, µ-ARPES, µ-LEED, XMCD, µ-XAS
Beam Size optimum 16x16 µm², minimum 5x5 µm², maximum 50x50 µm²
Energy Range 30 - 1200 eV
Time Scales msec - hours
Samples flat, conducting

2017-12-14

New capabilities on their way

Claudia Struzzi and Nikolay Vinogradov working in the scanning tunneling microscopy laboratory at MAX IV   Two projects have received funding from the Carl Tryggers Stiftelse för Vetenskaplig Forskning  Atomic force microscopy at MAX IV for studies of novel carbon nanostructures and modern catalysts Alexei Preobrajenski, Jan Knudsen, Nikolay Vinogradov Scanning probe techniques such as

scanning tunneling microscopy