FinEstBeAMS Attributes

TechniquesX-ray Photoelectron Spectroscopy (XPS), Angle-resolved Photoelectron Spectroscopy (ARPES), X-ray Absorption Spectroscopy (XAS), Photoelectron- Photoion Coincidence (PEPICO) Spectroscopy, Time-of Flight (TOF) Mass Spectroscopy, Negative-ion/Positive-ion Coincidence (NIPICO) Spectroscopy, Photoluminescence Spectroscopy (PS), Time-resolved Photoluminescence Spectroscopy
Beam Size0.2 (V) x 0.2 (H) mm, best: 0.05 (V) x 0.05 (H) mm
Energy Range4.5 - 1300 eV (275 - 0.95 nm)
Time Scalesnanoseconds to seconds
SamplesAtomis, Molecules, Clusters, Gases, Liquids, Atmospheric particles, Nanoparticles, Solids, Surfaces and Interfaces

Capabilities available for users

The radiation source is an elliptically polarizing undulator. It can provide radiation with different polarization properties: linearly polarized (horizontal, vertical, or inclined direction) and circularly polarized. Only linear horizontal and vertical polarizations have been tested extensively.

The photon energy range extends from 4.5 eV to about 1300 eV and is covered by two gratings. A 92 lines/mm grating (G2) can be used from 4.5 eV to 50 eV, while a 600 lines/mm grating works above 15 eV. However, the photon flux decreases considerably toward high photon energies. The actually usable photon energy range depends on the nature of particular experiments.

The beamline has achieved a resolving power of about 11000 at 400 eV photon energy using the exit slit of ~10 um in the monochromator.

FinEstBeAMS has three operational end stations: Gas-phase end station (GPES), Photoluminescence end station (PLES, also known as FinEstLUMI), and the solid-state end station (SSES).

The GPES has been designed to detect coincidences between energy resolved electrons and positive ions (PEPICO), but single electron and ion time-of-flight spectra can, of course, be measured. A setup consisting of two ion TOF spectrometers is also available. It can be used to measure coincidences between negative ions and positive ions.

The PLES can be used to measure fluorescence emission from different kinds of solids in the infra-red, visible and ultraviolet spectral ranges. The excitation functions of these emissions can be determined by scanning the incident photon energy.

The SSES is now available to regular users for studies of atomic and electronic structure of bulk and surface materials. It has been designed as a high-throughput workhorse for XPS, ARPES, and XAS with flexible sample preparation options. The temperature of sample preparation can be around 100 K by liquid-nitrogen cooling and up to around 1300K by resistive heating, direct heating and e-beam heating. The temperature of sample during measurement can be around 100 K by liquid-nitrogen cooling, room temperature and up to 600 K by resistive heating.

Further information about the end stations can be found under submenu “Experimental stations”.

Single-bunch operation can be offered on certain beamline commissioning days (Tuesdays). If you would like to add a single-bunch day to your regular beamtime proposal, you should check this option as a detector under the selection of the end station (available for the PLES and GPES) and explain in your beamtime proposal why single-bunch operation is needed.

In addition, there will be a whole week of single-bunch operation in the period September 2022 – February 2023 . If you want to apply for a beamtime with single-bunch operation only, you should indicate it clearly in your beamtime proposal. Please note that the FinEstBeAMS beamline has no chopper.