Madeleine_Schoug-5058

The ultrafast beamline will facilitate studies of the structure and dynamics of materials. Such studies are of fundamental importance for key scientific problems directly related to programming materials using light, enabling new storage media and new manufacturing techniques, obtaining sustainable energy by mimicking photo-synthesis and gleaning insight into chemical and biological functional dynamics. Due to the emergence of X-ray sources with high peak brilliance, the field of pico-second X-ray diffraction has developed rapidly over the last few years. The key technology behind future breakthroughs in this area is the generation and detection of very short and very intense X-ray pulses. The femtosecond X-ray beamline at the MAX IV short-pulse facility (SPF) will have pulse lengths on the time scale of molecular vibrations (100 fs) at wavelengths matching inter-atomic distances (Å). Swedish scientists have a prominent international profile in developing and utilizing ultrafast X-ray techniques. With strong national activities it is anticipated that this position will be even strengthened.

The FemtoMAX will be of great interest not only for the Swedish research community but will, also in an international perspective, become a core facility for ultrafast X-ray experiments in physics, chemistry and biology.

Techniques Time-resolved X-ray scattering, Time-resolved X-ray spectroscopies, Time-resolved SAXS, Time-resolved reflectivity
Beam Size Unfocused 1 mm diameter; Focused 0.04 mm dia; With cylindric Be-lenses 0.01 mm x 0.04 mm v x h
Energy Range 1.8 keV - 20 keV
Time Scales 100 fs- 100 ms (longer timescales than 1 ns may be more appropriate for the 3 GeV ring beamlines)
Samples Solids (4K-600K), Liquids, Gases and Plasmas

2017-04-11

FemtoMAX makes first time-resolved X-ray diffraction measurement

David Kroon, Van-Thai Pham, Jörgen Larsson, Amélie Jarnac, Henrik Enquist, Andrius Jurgilaitis   The studied sample is an indium antimonide (InSb) coated with 60 nanometres of gold. This type of structure is called photo-acoustic transducer which is a device that can convert the energy in light to a sound wave. The sample is illuminated with